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Summary

In the past tree height has been more difficult to measure accurately in the field than tree diameter at breast height.
As a consequence, models to predict height from diameter measurements have been widely developed in the forestry
literature. Through the use of airborne laser scanning technology (e.g., LiDAR), tree variables such as height and
crown diameter can be measured accurately, a development which has spawned the need for models to predict diame-
ter from airborne laser-derived measurements. Although some work has been done for fitting such models, none have
incorporated spatial information to improve the accuracy of the predicted diameters. Using a simple linear model for
predicting tree diameter from laser-derived tree height and crown diameter measurements, we compared the perfor-
mance of ordinary least squares (OLS), generalized least squares with a non-null correlation structure (GLS), linear
mixed-effects model (LME), and geographically weighted regression (GWR). Our data were obtained from 36 sample
plots established in Norway. This is the first study to examine the use of spatial statistical models for tree-level LiDAR
data. Prediction errors in tree diameter with LME are of 3.5%, with GWR are 10%, and with OLS are of 17%. LME
also exhibited low variability in predicting performance across all the validation classes. Giving the difficulties of us-
ing parametric statistical inference (such as maximum likelihood based indices) for GWR, we used permutation tests
and bootstrapping as a way for detecting statistical differences. LME was significantly better than the other models,
as well as GWR was to OLS and GLS. Our results indicate that the LME model produced the best predictions of tree
diameter from LiDAR-based variables to a degree that has not been possible earlier.

Introduction

Airborne laser scanning is a powerful remote sensing system for collecting topographic data having applications in
a variety of disciplines. Airborne laser scanning systems (ALS) have lead a revolution in remote sensing technology
during the last 10–14 years (Popescu y Wynne 2004). As pointed out by Reutebuch et al. (2005), the basis of this
revolution is the ability to measure directly the three-dimensional structure (i.e., terrain, vegetation, and infrastruc-
ture) of imaged areas and to separate biospatial data (measurements of aboveground vegetation) from geospatial data
(measurements of the terrain surface) using active remote sensing technologies. In ALS, a scanner which distributes
the transmitted pulses across the flight direction of the platform is attached to the laser, and such systems can measure
the 3D position of points on the ground and in vegetation canopies with an accuracy of a few decimetres (Næsset
et al. 2004). Among the laser scanner systems currently available, LiDAR (light detection and ranging) sensors offer
impressive performance that challenge physical barriers in the optical and electronic domain by offering a high density
of points at scanning frequencies of 50,000 pulses/second, multiple echoes per laser pulse, intensity measurements for
the returning signal, and centimeter accuracy for horizontal and vertical positioning (Popescu y Wynne 2004). These
features, make LiDAR useful for directly assessing vegetation characteristics, and overall providing new tools for mea-
suring and monitoring biospatial data across the landscape (Popescu y Wynne 2004, Reutebuch et al. 2005). Further
reviews on ALS and LiDAR studies in general and in forestry, can be found in Næsset et al. (2004) and references
therein.
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Height-diameter models are key in conventional forest inventories. In conventional forest sampling, i.e., ground-
based measurements of tree variables within sample plots, diameter at breast height (dbh) is measured for all the
trees within plots, and height (h) is measured only for a sample, or also referred as subsample, of trees within plots,
because h is more difficult and expensive to measure than dbh. In this setting, models that predict h as a function of
dbh (hereafter referred to as height-diameter models, or h-dbh models2) are fitted in order to later predict h of those
trees based on tree dbh alone. Several studies have been conducted on h-dbh models, e.g. Thorey (1932), Meyer
(1940), Curtis (1967), Yuancai y Parresol (2001), including model comparisons (e.g., Zhang 1997, Peng et al. 2001),
up to models incorporating stand-level variables (e.g., Staudhammer y LeMay 2000, Sánchez et al. 2003) and random-
effects (e.g., Lappi y Bailey 1988, Robinson y Wykoff 2004, Lynch et al. 2005). Several model forms have been
proposed and fitted, van Laar y Akça (p. 122, 2007) list a few.

Modelling efforts using data from laser scanning are mainly at the plot level. Forest canopy height model (or
CHM) is a digital elevation map of the top-of-forest canopy (Nelson et al. 1998). The CHM is a plot-level (or stand-
level) height model. A CHM is relatively easy to obtain through airborne laser scanning techniques, e.g., LiDAR, and
methods for calibrating it have been advised. Several efforts for estimating plot-level tree heights derived from LiDAR
have been conducted (e.g., Popescu et al. 2002, Popescu y Wynne 2004). As pointed out by Næsset et al. (2004),
who reviewed the Nordic experience in laser scanning, the main objective especially in Norway has been to develop
methods that are directly suited for practical forest inventory at the stand level. In this setting, regression models are
fitted using laser-derived variables and field plot variables, in order to predict stand variables (plot-wise). The stand
variables of chief interest in this regard, according to Næsset et al. (2004) have been: mean tree height, basal area,
and stand volume. Other variables have been also predicted such as biomass and carbon (e.g., Nelson et al. 2004),
diameter and basal area distribution (e.g., Næsset y Gobakken 2004), and number of trees (e.g., Hudak et al. 2005,
2008).

In a laser-scanning-based forest inventory framework there is a shift from h-dbh to dbh-h models. When trees are
measured on the ground, their positions can be linked with laser measurements (Persson et al. 2004), through a process
known as segmentation, and the trees identified from the segmentation, are known as linked trees. Individual heights
of the linked trees can be roughly estimated from laser scanning data by using the approximated ground level and the
highest hit of the treetop (Rönnholm et al. 2004). Nevertheless, tree diameter is not available from LiDAR data, but it
is a crucial variable in order to analyze the forest structure. Analogous to the need in ground-based forest inventory to
develop h-dbh models to predict h of non-measured trees, in a laser-based forest inventory we need dbh-h models to
predict dbh. More generally LiDAR-derived variables, not just h, can be used as predictor variables.

Spatial correlation especially affects statistical inference of fitted models. When data are spatially collected, it is
likely that points close together have more similar values (or different) of variables than points that are farther apart
(Schabenberger y Gotway 2005, Ives y Zhu 2006). Due to this, residuals of models being fit using OLS would likely
be autocorrelated. As pointed out by Kissling y Carl (2008), the presence of spatial autocorrelation is problematic for
classical statistical test because these methods assume independently distributed errors. The effects of ignoring spatial
correlation are summarized by Hoeting (2009), as follows. Effective sample size decreases as the correlation between
observations increases (Schabenberger y Gotway 2005). Ignoring spatial correlation when selecting covariates for
inclusion in models can lead to the exclusion of relevant covariates in the model (Hoeting et al. 2006). Models which
incorporate spatial correlation allow for direct incorporation of the sampling design, using model-based inference, in
the modelling by accounting for the hierarchical dependences between members of a population (Cressie et al. 2009).
Further references on applications mixing hierarchical modelling and sampling design can be found in Hoeting (2009).

Models that explicitly use spatial information are not common in forest inventories. When a traditional regression
model is fitted with ordinary least squares (OLS), beyond the implicit spatial arrangement of the data, spatial corre-
lation plays no role in the modelling process (Brunsdon et al. 1998). The advantages of taking spatial information
into account using ground-based measurements for modelling h-dbh (Zhang y Shi 2004), tree basal area growth-dbh
(Zhang et al. 2004), tree crown area-dbh (Zhang y Gove 2005, Zhang et al. 2005) have been examined. In a laser
scanning context, the works on modelling dbh from LiDAR variables have not taken spatial information into consid-
eration. For example, Hyyppä et al. (2001) built a model, using OLS that predict tree diameter dbh as a function of

2 Height-diameter models are sometimes referred to as diameter-height models (e.g., Schröder y Álvarez 2001, Zhang y Shi 2004). We
prefer to be consistent with mathematics, and reserve the left word in the couplet to identify the response variable, as in Henry y Aarssen (1999).
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height (lh) and tree crown diameter derived from LiDAR (lcd). They only compared the forest inventory estimates of
the mean height obtained using that function versus the same parameter estimates using ground-data, however, they
did not report any statistics or comparison of the fitted model. The same model was later fit by Schardt et al. (2004)
and Garcı́a et al. (2007) with good results, but again not offering greater details on the performance of the model. Both
Persson et al. (2004) and Heurich et al. (2004) proposed slightly different models using the same predictor variables.
Persson et al. (2004) did report the fit statistics of the model, and obtained errors of around 10% in predicting dbh.
In recent studies, Heurich y Thoma (2008) and Heurich (2008), both height and density-related laser variables (e.g.,
height percentiles and total penetration rate. Næsset 2002), have been incorporated in models for predicting dbh.

Testing the specification of spatial regression models, has not been a straightforward endeavor. Brunsdon et al.
(1999b) and Leung et al. (2000) compared the use of OLS and geographically weighted regression (GWR) using a
parametric test, a F -test based on the residual sum of squares of each model, and maximum likelihood-based tests have
been later proposed (e.g., Fotheringham et al. 2002) too. However, as we will shall later argue, those tests are not valid
because they are suitable for parametric models, but not for non-parametric ones such as GWR. Zhang y Shi (2004) and
Zhang et al. (2004) compared the use of OLS and GWR using the F -test, as described in Leung et al. (2000). Later,
comparisons of GWR were extended not only to OLS but also to other models (e.g., Zhang y Gove 2005, Zhang et al.
2005, 2008) such as linear mixed-effects models (LME). Nevertheless, in the straight statistical sense of the model,
their LME models are not actually mixed-effects models, because no random-effects coefficients were included in their
models. The statistical model that they were fitting was a generalized linear model with a non-null correlation structure.
Brunsdon et al. (1999a) compared GWR and a model with random coefficients (in GWR, parameter coefficients are
not assumed to be random, Brunsdon et al. 1999a), which they fitted in a Bayesian framework. A Bayesian approach
proposed by Gelfand et al. (2003), termed spatially varying coefficient process (SVCP), has been applied by Waller
et al. (2007), Wheeler y Waller (2009), and Finley et al. (Submitted) with success. This approach involves, in general
terms, fitting a LME using Markov chain Monte Carlo (MCMC) algorithms assigning prior distributions to fixed and
random effects (Waller et al. 2007). We prefer the frequentist statistics framework. Further discussion about frequentist
and Bayesian statistics can be found elsewhere (e.g., Efron 1986, Dennis 1996, Ellison 2004).

Reasoning that building statistical models that (may) use spatial information offer both a better prediction perfor-
mance and a sounder statistical framework than using statistical models that do not use spatial information, we compare
the performance of alternative models fitted using ordinary least squares (OLS), generalized least squares with spatial
correlation structure (GLS), linear mixed-effects model (LME), and geographically weighted regression (GWR), for
modelling the spatial variation in tree diameter at breast height as a function of laser-derived height relationship in
forest stands.

Methods

Data

Field data The study area is located in the municipality of Aurskog, situated in the south-eastern Norway (59◦80′

N, 11◦55′ E, 172-388 m a.s.l.). The sample plots were located in heterogeneous forest conditions regarding the tree
species composition, site qualities, and development classes. The main three species were Norway spruce [Picea
abies (L.) Karst.], Scots pine (Pinus silvestris L.), and birch (Betula sp.). At the plot level, the species composition
by volume ranged from 0-98% for spruce, 0-100% for pine, and 0-34% for birch. The terrain across the study area
is gentle compared to average terrain conditions for productive forests in Norway. Nonetheless the local topography
varied significantly among plots. The plot center coordinates (i.e., the x and y position) were determined by differential
dual-frequency Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) measurements,
using two Topcon dual-frequency receivers. On each plot, all trees with dbh ≥ 5 cm were callipered, and the stem
locations were mapped using a Sokkia SET5F total station. The tree species and vegetation status were recorded for
each measured tree. Total tree height (h) was measured using a Suunto hypsometer, on a total of 618 reference trees
selected from across all plots.
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LiDAR data The LiDAR data was obtained under leaf-on canopy conditions on June, 2006. Five non-overlapping
strips were flown from an average flying altitude of 800 m, using a PA31 Piper Navajo (LN-LAS) airplane. The strips
were E-W oriented, with an N-S spacing of ca. 8.7 km. Data were acquired with an Optech ALTM 3100 system,
operating with a pulse repetition frequency of 100 kHz, a scanning frequency of 70 kHz, and using a half-angle of
5◦. Laser data were processed by the contractor Blom Geomatics A.S. The GPS/INS processing was performed using
Applanix POSPac software, and then planimetric coordinates (x and y) and ellipsoidal heights of the first and last
return echoes were obtained from the navigation and laser data using Optech REALM tools. The 3D adjustment
and classification was performed using TerraScan and TerraModel software from TerraSolid Ltd. The TIN model
representing the terrain surface was subtracted from the height values of all the echoes recorded, to obtain the heights
above the surface of the echoes, with an accuracy of ± 10 cm.

Individual tree detection Only the first returns located inside buffers extending 10 m around the plot borders were
retained for canopy height models (CHM) creation. The average density of the first echoes within the buffers after
data processing was 7.3 pulses/m2. For each plot, a CHM was obtained by griding the irregularly spaced laser returns
into a 0.35 m regular grid. For single tree delineation, we followed the procedure described by Hyyppä et al. (2001).
The CHM was smoothed using the low-pass Gaussian filter described by Hyyppä et al. (2001). Regional maxima were
identified in the smoothed CHMs by searching in 8-connected neighborhoods for finding the pixels having higher
values than their external boundary neighbors. A marker-based watershed algorithm was employed for individual tree
crown delineation. Individual tree variables (tree height, crown width and stem location) were obtained from the point
clouds located inside the delineated segments. The tree height and stem location were obtained directly from the echo
with the highest z-value within each segment, which was considered to represent the top of the delineated tree. The
polygons representing the crown projections of the delineated trees on the ground were approximated using the convex
hull of the (x, y)-coordinates of the returns located within each segment. Thus, the crown widths were estimated as
the diameter of a circle with the same area as the crown polygons. In total, we have 1,438 trees with both field-based
and lidar-derived variables (Table 1). The minimum number of sample trees per plot was 22, which is a reasonable
number of trees for fitting dbh-LiDAR derived variables models on a per plot basis.

Table 1: Descriptive statistics for 1,438 trees. dbh is diameter at breast height, h is total height, lh and lcd are lid
derived height and crown diameter, respectively.

Statistic dbh (cm) h (m) lh (m) lcd (m)
Minimum 5.0 5.0 3.4 0.3
Maximum 49.5 35.8 29.6 4.2
Mean 19.2 15.2 15.1 1.5
Std.Dev 7.8 4.7 4.8 0.7

Statistical models

Slight variations have been proposed for dbh-LiDAR derived variables models. Hyyppä et al. (2001), Schardt et al.
(2004), and Garcı́a et al. (2007) used the following mean function

E[dbh] = β0 + β1lh+ β2lcd, (1)

where β0, β1, and β2 are coefficients to be estimated, lh is the laser-derived height, and lcd is the laser-derived tree
crown diameter. In the sequel, we shall use (1) as the mean function in various statistical models. Our aim is to
compare a variety of ways to incorporate spatial information in statistical models for dbh. Rather than pool data from
all plots together, we fit the various models to data from each plot separately, thereby avoiding having to account for
variations in site quality, aspect, slope, and other topographical features among plots. We largely adopt the statistical
notation of Schabenberger y Gotway (2005) and Pinheiro y Bates (2000), where a response and predictor variables y
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and xs have been recorded at spatial locations si, ..., sn, i.e., specific geographic locations for each ith observation with
spatial coordinates si = [xi, yi]′, represented by y(s) and X(s), respectively. The additive error term is represented
by e(s).

Model 1 The first statistical model is as follows

dbh(si) = β0 + β1lh(si) + β2lcd(si) + e(si), (2)

e(si) ∼ N
(
0, σ2

)
,

Σ [e(si), e(sj)] = σ2In,

where dbh(si), lh(si), and lcd(si) are dbh, lh, and lcd, recorded at spatial location si, respectively. Residual of the
model at location si are represented by e(si), and they are assumed Normally distributed with mean 0 and variance
σ2. β0, β1, and β2 are coefficient parameters of the model. Σ [e(si), e(sj)] is the covariance matrix of the residuals,
and In is an identity matrix of size n (the sample size).

Eq. (2) can be more generally represented in matrix form as follows,

y(s) = X(s)β + e(s) (3)

where y(s) is the vector with the response variable recorded at location s, X(s) is the matrix of predictor variables
spatially recorded, β is a vector with the coefficient parameters of the model, and e(s) is the vector of random errors.

With ordinary least squares (OLS), the coefficient vector is estimated by

β̂OLS =
{
X(s)′X(s)

}−1X(s)′y(s). (4)

Model 1 does not incorporate any kind of spatial information. As pointed out by Schabenberger y Gotway (2005,
p. 316), model 1 is a spatial regression model since the response variable y(s), and the predictor variables comprising
X(s), are recorded at spatial locations. However, the spatial information serves only to link y(s) and X(s), yet, there
is nothing in the model that explicitly considers spatial pattern or spatial relationships.

Model 2 The second model differs from (2) only in its specification of the error covariance. For this model

Σ [e(si), e(sj)] = σ2Ω, (5)

where Ω is the correlation matrix, the elements of which specify the spatial correlation between all pairs of trees on a
plot. If the correlation parameters in Ω were known, then the generalized least squares (GLS) estimator

β̂GLS =
{
X(s)′Ω−1X(s)

}−1X(s)′Ω−1y(s) (6)

would be feasible. Usually the parameters in Ω must be estimated from data or auxiliary information. Using Ω̂ as the
estimated correlation matrix (see bellow), the estimated GLS estimator of β is

β̂EGLS =
{
X(s)′Ω̂−1X(s)

}−1X(s)′Ω̂−1y(s). (7)

As pointed out by Cressie (1993) and exemplified by Pinheiro y Bates (2000), spatial correlation structures are gen-
erally represented by their semivariogram, instead of their correlation function. We derived Ω̂ for each plot after
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deciding the following: (a) the functional form of the semivariogram, (b) whether the semivariogram would include a
nugget effect, and (c) the distance metric to be used. Regarding (a), we assessed the following semivariogram func-
tions; exponential, Gaussian, linear, rational quadratic, and spherical. All of them are fully described in Pinheiro y
Bates (2000, p. 230–233), as well as further details on them can be found in spatial statistics books (e.g., Waller y
Gotway 2004, Schabenberger y Gotway 2005, Diggle et al. 2007). Regarding (b), we assessed the following distance
metrics between the x and y coordinates among trees: Euclidean, maximum, and Manhattan. Finally, regarding (c),
we assessed the effect of adding a nugget to the semivariogram function. We fit model 2 and compared all the possible
combinations of semivariogram function-distance metrics-nugget effect, and selected the best model using the Akaike
Information Criterion (AIC, Akaike 1973). A referee suggested that a Matern type of correlation function would
better capture a nugget effect, however, we did not use this function in our study, but did add nugget effect.

Model 3 The third model adds random effects to the fixed effect coefficient parameters:

dbh(si) = (β0 + b0i) + (β1 + b1i)lh(si) + (β2 + b2i)lcd(si) + e(si), (8)

bi = (b0i, b1i, b2i)′ ∼ N (0,D (φ)) ,

e(si) ∼ N
(
0, σ2

)
,

Σ [e(si), e(sj)] = σ2Ω,

where D (φ) is a 3 × 3 random-effects covariance matrix parameterized by φ. The inclusion of a vector of random
effects permits the model to be individualized to each tree, while also permitting a pooling of all the data when fitting
the model. Importantly, the random individual effects induces an intra-individual correlation structure that accounts
for the lack of independence among trees on the same plot. It is this feature that has great appeal for modelers of
correlated data, even though the induced correlation function may not be easily discernible (Schabenberger y Gregoire
1996). Further details on mixed-effects models can be found in Pinheiro y Bates (2000) and Schabenberger y Pierce
(2002), as well as applications in a spatial context in Schabenberger y Gotway (2005) and in Bivand et al. (2008).

In matrix notation, (8) may be written as

y(s) = X(s)β + Z(s)b + e(s). (9)

The flexibility permitted by a mixed model of this sort comes at the price of added complexity, both statistical and
computational. In practice it is often found that data do not support a random effect for each fixed effect parameter,
and also that when the correlation structure is modelled by D (φ), it is often sufficient to specify Ω = In.

Customarily β in (9) is estimated by maximum likelihood or restricted maximum likelihood. followed by the best
linear unbiased predictors (“BLUP”, Robinson 1991) of the random effects. We used the nlme package (Pinheiro
et al. 2008) implemented in R for fitting LME models.

Having fitted a LME model, the mean response at x can be estimated by xβ̂, where x is the vector of covariate
values. An individual observation can be predicted by adding the corresponding BLUP of the random effect. Prediction
of a new observation outside the sample data is impossible owing to the impossibility of computing the BLUP of the
random effect for that observation. Nevertheless, given a rather new (i.e., not used before) small sample of response-
predictor variables pair of data (e.g., 2-4) and a fitted LME, it is possible to predict the random-effects as well, that is
calibrate the mean response (see examples in Lappi y Bailey 1988, Lappi 1991, Lynch et al. 2005). A new observation
can be think in our context as new trees that appear after running a different segmentation algorithm or trees that reach
the dbh minimum in a second measurement. In any case they were not part of the sample used for fitting the model.

In model 3 we are not directly adding spatial information. The random effects in Eq. 8, show that we are estimating
an overall (i.e., fixed) mean intercept, and modelling local deviations from this mean. These deviations are driven by
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a distribution, in our case b0i ∼ N
(
0, σ2

b0

)
, that determines how much variation would be assigned to each tree from

the mean intercept.

Model 4 The fourth model allows the coefficients to vary by spatial location

dbh(si) = β0(si) + β1(si)lh(si) + β2(si)lcd(si) + e(si) (10)

e(si) ∼ N
(
0, σ2

)
,

Σ [e(si), e(sj)] = σ2In,

where β0(si), β1(si), and β2(si) represent the coefficient parameters for the ith observation, the other notation was pre-
viously defined. Model 4 can be fitted using geographically weighted regression (GWR), a non-parametric regression
method that has been portrayed by Fotheringham et al. (2002) and previous work of the same authors (e.g., Brunsdon
et al. 1996, 1998, Fotheringham et al. 1998).

In GWR a vector of coefficient parameters is required for each observation, that is to say, each observation has
different coefficient parameters, therefore, having a local feature. Sometimes, only a portion of the coefficients of a
GWR model can be local and the other ones can remain global, which has been called “mixed-GWR” (Fotheringham
et al. 2002, p. 65–73). The estimated parameter vector for each observation in GWR (Brunsdon et al. 1998) is obtained
using weighted least squares regression, as follows

β̂iGWR =
{
X(s)′W(si)

−1X(s)
}−1X(s)′W(si)

−1y(s), (11)

where W(si) is the diagonal weight matrix for the ith observation (i.e., tree). This matrix in general is defined as
W(si) = diag{W (si, sj)}, where the scalar weight W (si, sj) for the jth observation depends on its proximity to
the ith observation. A simple scheme of weighting would be to exclude from the model fitting observations beyond
a distance b from the ith observation, which is termed the moving window approach (Fotheringham et al. 2002).
With this approach the spatial weighting has the problem of discontinuity in the parameter estimates (Brunsdon et al.
1998, Schabenberger y Gotway 2005). An alternative approach is to use a continuous spatial weighting function, as in
general represented by

W (si, sj) = f(dist(si,sj), b), (12)

where f is a kernel function with bandwidth b. With (12) both the kernel and the bandwidth need to be stipulated. We
assessed a Gaussian and a near-Gaussian kernels as being spatial weighting functions and selected the one that achieve
a lower AIC3 of the GWR model. The bandwidth is the searching radius around each observation and is key in GWR.
The bandwidth can greatly affect the properties of the β̂iGWR (Brunsdon et al. 1998). It governs the extent to which
the resulting local calibration results are smoothed (Fotheringham et al. 2002). We used a fixed bandwidth of 6 m for
all the plots, determined based on the range of the empirical semivariogram (i.e., distance in which the semivariogram
reach the sill) of dbh per plot, and is consistent with the studies by Zhang et al. (2004) and Pukkala (1989). We used
the spgwr package (Bivand y Yu 2009) implemented in R for fitting GWR models.

Comparing models

We first computed the studentized model residuals and plotted them in a spatial fashion. Zhang y Gove (2005) called
these type of residuals “local Z-values”. These values would allow us for comparing the magnitudes of the residuals
in space. Notice that we used the studentized residuals definition given by Schabenberger y Pierce (2002, Eq. 4.23),

3We used the AIC of GWR as defined in Fotheringham et al. (2002, eq. 2.33, p. 61).
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and in order to compute this type of residual for GWR, we used the L matrix of Leung et al. (2000, Eq. 16) as the hat
matrix.

Goodness-of-fit For each model (OLS, GLS, LME, and GWR), we computed the following statistics in order to
assess the goodness-of-fit of the tested models: (a) The aggregated difference (AD) or mean residual, computed as
follows

AD =
1
n

n∑
i

ri, (13)

where ri = dbh(si) − d̂bh(si), dbh(si) is the observed tree diameter at the ith location, d̂bh(si) is the predicted tree
diameter at the si location, and n the sample size in the field plot being analyzed.

(b) the root mean square differences (RMSD) as follows,

RMSD =

√√√√ 1
n

n∑
i

r2i , (14)

and (c) the aggregated of the absolute value of the differences (AAD), as follows

AADj =
1
n

n∑
i

|ri| . (15)

We fitted and validated the models using the same observations (on a per plot basis). We deliberately avoided the
use of validation or cross-validation, because withholding observations alters the pattern of spatial correlation of the
observations. We preferred to use the term RMSD rather than RMSE (root mean squared error) following Stage y
Crookston (2007) and Hudak et al. (2008).

At this stage, we assess the models exclusively according to their goodness-of-fit. We follow the methodology for
selecting models proposed by Salas (2002). The methodology is as follows. First, partition the data into validation
classes. We use the percentiles of the variable lh in order to define five validation classes, with similar number of
observations in each class. Second, compute the statistics detailed above (AD, RMSD, AAD) within validation classes.
Third, compute the mean and standard deviation of among-class values of these statistics, therefore having an among-
class mean and an among-class standard deviation for AD, and so on). Fourth, assign ranking to the among-class mean
and among-class standard deviation of each statistic. Ranking score 1 is assigned to the model with lowest among-class
mean (or closer to 0 for AD) and lowest among-class standard deviation (which indicates more stable results across
validation classes). Fifth, add all these ranking scores (six in total, two scores by three statistics) and sort the models
according to this sum (no weighting of statistics was considered), the model with the lowest sum would be rank as the
best. The methodology aim to rank best not only the models with overall better precision and accuracy but also with a
consistent behavior across validation classes.

Statistical inference Statistical inference for GWR offers several challenges. Once we have built and maximized the
log-likelihood function of a parametric model, it is straightforward to compare models using indices such as; Akaike
Information Criterion (AIC, Akaike 1973) or the correction of AIC of Hurvich et al. (1998), among others. However,
this is possible only for parametric models (in our study; OLS, GLS, and LME). On the other hand, and although we
could think in building a likelihood function for GWR (e.g., Eq. 4.2 in Fotheringham et al. 2002), the actual way in
which the parameters are estimated does not involve any optimal solution for this likelihood function, because all the
coefficients are fitted independently from one observation to another. That is to say, the log-likelihood in Fothering-
ham et al. (2002) for GWR permits an infinity of maxima. Non-parametric statistical tests provide a more suitable
framework for assessment of GWR. Permutation tests, also called randomization (Manly 2006) or re-randomization
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(Welch 1987) tests, offer a non-parametric simple and straightforward technique for conducting hypothesis testing
among statistics of two groups. In order to conduct the permutation tests, we first defined the statistics that would
allow us to compare the models, which we will denote as θ̂, as follows

θ̂ =
1
m

m∑
j=1

(
RMSDaj −RMSDbj

)
(16)

where m is the total number of sample plots, RMSDaj and RMSDbj are the root mean square differences (14) in %
of models a and b, respectively, for the j-th plot. We set model a to be the base one and model b the new model, or the
one with lower RMSD. Our hypothesis under test is H0 : µRMSDa − µRMSDb

= 0, vs. Ha : µRMSDa > µRMSDb
.

The following step was to randomly assign (without replacement) m values of RMSDs to model a and the the rest to
model b, and based on this new sample (called “permutation sample” by Hesterberg et al. 2003), we computed θ̂ (Eq.
16) for the permutation sample. The next step is to repeat this resampling many times, we used 10,000 permutations.
The distribution of the statistic from these resamples forms the sampling distribution under the condition that H0 is
true. Finally, we computed the proportion of the distribution which exceeded the difference observed between the two
models (i.e., θ̂ using the original sample), which is the estimate of the P -value for the one-sided test, given the null
hypothesis is true. We conducted this simple two-sample permutation test procedure between every pair of models.
We also used other variants of non-parametric tests, but with all of them we achieved the same conclusions.

Results

Most of our plots shown a random pattern in the spatial distribution of their trees, and closer toward a regular distri-
bution. We fit a smooth curve to the empirical semivariogram in order to detect a general trend of the autocorrelation
of dbh, which was used later for fitting GWR models. The semivariogram shown spatial correlation but only at small
distances. Overall, our type of forest studied here do not offer us a great variability of spatial structures.

A rather simplified version of model 3 was sufficient for our data. Although our base formulation of model 3
(Eq. 8) allowed both the intercept and the slopes coefficient parameters to have a random-effect, we found better fit,
as measured by AIC, when having only the intercept random-effects. That is, the final model 3 used was dbh(si) =
(β0+b0i)+β1lh(si)+β2lcd(si)+e(si). Furthermore, we did not find significant improvement by imposing a marginal
correlation, therefore, we set Ω = In in (8).

Studentized residuals changed both in magnitude and spatial distribution. Change, regards to OLS, in the spatial
distribution pattern (i.e., distribution of positive and negative values) of the studentized residuals were only possible to
observed for GWR (Figure 1d). The other statistical models do not change the spatial pattern of the residuals, which
is in agreement with the findings of Zhang y Shi (2004), Zhang et al. (2004). However, LME produces much smaller
studentized residuals than the other models (Figure 1c).

The RMSD of the models, that is computed based on all the trees of each plot (Figure 2), shows a clear difference
between the LME and the rest of models, being not only the more precise but also by far the most accurate. AD
and AAD by validation classes point again to LME as the model with a more consistent predictive perform across all
validation classes. In the same manner, the proportion of field plots (i.e. cases) where each model was assigned to be
the best, according to the proposed methodology, portrait to LME as the best in almost all (95%) the field plots used
in our study (Table 2).

Statistical inference assessment of the RMSD between pairs of models showed significant differences. Statistical
significance comparisons of the models did favor the best predictive models. There is indeed an ordering of the models,
not only considering the pure RMSD but also its statistical significance, which is LME preferred to GWR preferred to
OLS (Figure 3). Nevertheless, we did not find strong evidence against the null hypothesis of no differences between
the RMSDs of GLS and OLS. This is expected because GLS really affects (or improve) the estimates of the standard
errors of the coefficient estimates, over the ones obtained using OLS.
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Figure 1: Graph of studentized model residuals (local Z-values) from the four modelling techniques [OLS(a), GLS (b),
LME (c), and GWR (d)] when predicting diameter in a sample plot. The black dots represent positive local Z-value,
and the circles represent negative local Z-value.

Table 2: Percentage of the plots (i.e., cases) where each model was chosen as the best according to its prediction
performance.

Model Position
1st 2nd 3rd 4rd

GLS 0.0 2.8 44.4 52.8
GWR 5.6 86.1 5.6 2.8
LME 94.4 5.6 0.0 0.0
OLS 0.0 5.6 50.0 44.4

Discussions

The linear mean function (Eq. 1) seems to be appropriate for these data. We obtained a RMSD of 18% for our model
fit by OLS. Among other studies with models having the same predictor variables: Persson et al. (2004) obtained a
10% error, computed over all their sample trees, but with a much smaller sample (562 trees) and a smaller diameter
range too; and unfortunately neither Heurich et al. (2004) nor Schardt et al. (2004), Garcı́a et al. (2007) reported their
dbh model errors. Heurich (2008), using models with more predictor variables, obtained a RMSD of 19.9%4 for his
dbh models in 936 trees. Therefore we think our mean function performs reasonable well, and is appropriate to be
used as reference for adding extra statistical features.

4 This value was derived and computed proportional to the sample size of his forest types.
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Figure 2: Box plot of the root mean square differences (RMSD) in percentage for predicting tree diameter in a field
plot (i.e., each data point represents a RMSD for a plot) from the assessed statistical models. GLS is generalized least
squares with correlation structure, GWR is geographically weigthed regression, LME is linear mixed-effects, and OLS
is ordinary least squares.

LME offered a series of key features in comparison to the other statistical models. We obtained the best precision
and accuracy in predictions using LME. Prediction errors with LME are much lower (4%) than what can be achieved
having a rather overparametrized model such as GWR (10%), where a full model is fitted for each observation. Not
only were the RMSDs from LME statistically significant different from all the other models, but also is a more ap-
propriate model for spatially correlated data. GLS models the spatial correlation of the residuals, its prediction errors
are not significantly different from the one obtained from a simpler OLS model. However, standard error estimates
under OLS are biased, which raises doubts about the correctness of statistical inference following OLS estimation.
Finally, LME also offers us a statistical pathway to further explore the relationship being modelled. We could extract
the random-effects and relate them to other potential variables that are needed and are not being currently considered
in our skeleton model.

The use of GWR in practical applications is unclear. Although several studies have portrayed GWR as performing
well and having a series of advantages over other model fitting methods (e.g., Zhang y Shi 2004, Zhang et al. 2004,
Zhang y Gove 2005, Zhang et al. 2005), few studies have focused on how a GWR model could be used to predict
Y for a new observation which was not used in fitted the model (i.e., impute). One way for doing so is having
the original data set used for fitting the model, and that is done in a type of cross-validation manner (e.g., see the
explanation of GWR prediction in Leung et al. 2000, , p.27). Indeed, alternatives such as interpolating in a map given
the GWR predictions for known points or interpolating the parameter estimates (which is the final aim of GWR), is
possible, but the statistical properties of interpolated predictions may be difficult to discern. On the other hand, LME
use in an imputation setting is straightforward. For LME we could only use the fixed-effect parameter estimates to
generate population-average prediction. It is also possible to calibrate the imputation using the BLUP of the random-
effects using only a few new observations (Lappi y Bailey 1988). Notice that those new few observations needed
for calibrating a LME would not be enough for fitting a new GWR model, therefore being much more practical than
GWR.

Parametric statistical inference is questionable for GWR models. We proposed the use of permutation tests, as well
as bootstrapping (which was not shown here) in order to test the null hypothesis of no difference in the population
means of the prediction errors (RMSD) between models. The results at least for our data were still pretty clear: there
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Figure 3: Permutation distribution of θ̂ (i.e., the mean difference between RMSDs on predicting tree height from OLS,
GLS, LME, and GWR models) using a simple two-sample permutation test. The vertical line show the statistics for
our dataset. 10,000 permutations were conducted. The empirical one-sided P -value for the significance of the statistic
is also printed.

are significant difference for LME over GWR, being also more parsimonious and holding a stronger statistical theory.
Further research into the use of permutation and resampling methods to compare the performance of GWR models to
parametric models is needed.

Concluding remarks

Incorporating the tree spatial information available from LiDAR data into modelling tree diameter, allows for taking
into account the spatial correlation of the data, contributing not only to improving prediction performance but also
more appropriate statistical inference. Past modelling efforts from LiDAR data only used OLS, therefore our study
has shown new alternatives for same efforts, as well as, reduce significatively prediction errors. Given the same type
of LiDAR data, we can achieve a better modelling of tree diameter, a key variable for forest characterization. The
different pitfalls pointed out for GWR avoid a sound statistical use of it, however, nevertheless, we recognized it can
be a useful exploratory spatial data technique, which it seemed to be its original aim. To our knowledge, this is the
first study analyzing the use of spatial statistical models for LiDAR data. Our results show that a mixed-effects model
offers the best predictions of dbh from LiDAR -based variables.
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