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ABSTRACT

ARTICLE HISTORY

The heterogeneity and 3-dimensional (3D) organization of forest canopy elements is highly linked with
the spatial variability of within and below canopy light. Using terrestrial LIDAR we studied the influence
of several parameters in efficiently building 3D canopy models, and quantified below canopy light in 2
forest stands using ray-tracing. A voxel-based approach was used for canopy modeling, and a series of
forest scenes were built for calculation of simulated structural variables (e.g., leaf area index, canopy
openness). Through hypothesis testing, we found that simulated variables were consistent with the
observed ones depending on: forest type, voxel size utilized in 3D modeling, and the zenith angle
ranges used for calculations. Following below canopy light simulations were performed considering
these 3 aspects. On average, estimates of light being transmitted overestimated measured light, and
variance in below canopy light was maximum at lower values of measured light. This study presented
a method to objectively define 3D modeling parameters for an efficient characterization of canopy
structure, allowing to simulate trends in radiation flux transmitted to the forest floor. Improvements
in the modeling process and ray-tracing parameterization were suggested.

RESUME

L'hétérogénéité et I'organisation tridimensionnelle (3D) des éléments du couvert forestier sont forte-
ment liées a la variabilité spatiale de la lumiere a l'intérieur et sous le couvert forestier. En utilisant le
LiDAR terrestre, nous avons étudié I'influence de plusieurs paramétres pour construire efficacement
des modeéles 3D du couvert forestier, et nous avons quantifié la lumiére sous le couvert forestier dans
deux peuplements de foréts en utilisant une méthode de ray-tracing. La modélisation par voxel a
été utilisée pour représenter le couvert forestier et une série de scénes forestiéres a été construite
pour le calcul de variables structurales simulées (par exemple, l'indice de surface foliaire, I'ouverture
du couvert). Grace a des tests d’hypothéses, nous avons constaté que les variables simulées étaient
cohérentes avec celles observées en fonction du type de forét, de la taille du voxel utilisée dans la mod-
élisation 3D et des plages d’angles zénithaux utilisées pour les calculs. Les simulations de la lumiere
sous le couvert forestier ont été réalisées en tenant compte de ces trois aspects. En moyenne, les esti-
mations de la lumiére transmise présentaient une surestimation de la lumiere mesurée et la variance
de la lumiére sous le couvert forestier était maximale a des valeurs inférieures de la lumiere mesurée.
Cette étude a présenté une méthode permettant de définir objectivement les parametres de mod-
élisation 3D pour une caractérisation efficace de la structure du couvert, permettant de simuler les
tendances du flux de rayonnement transmis au sol de la forét. Des améliorations ont été suggérées
pour le processus de modélisation et pour la paramétrisation de la méthode du ray-tracing.
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Introduction

Forest canopy is a unique part of forest ecosystems where
fundamental interactions between vegetation and the
physical environment take place. These interactions drive
forest productivity, which is closely linked to biodiver-
sity richness (Waide et al. 1999) and can be used to
explain how forest health and dynamics are affected by, for
example, climate change. The structure of forest canopies
influences solar radiation interception and transmittance,

depending on the amount of incident solar radiation at
a particular incident angle, the spectral properties of tree
elements, and the location and dimension of canopy gaps
(Holbrook and Lund 1995). Therefore, behavior of key
variables in estimating forest productivity are connected
with the heterogeneity and 3-dimensional (3D) structure
of canopies (Gobron and Verstraete 2009). A key vari-
able is the fraction of photosynthetically active radia-
tion (PAR) in the 400 nm-700 nm spectral range that a
plant canopy absorbs for photosynthesis and growth. The
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impact of canopy structure on solar radiation intercep-
tion and transmittance can be quantified using 3D radia-
tive transfer models (Cescatti 1997). Part of the required
inputs for developing such models encompass accurate
descriptions of canopy structure, crown shapes, leaf den-
sity, and spatial distribution of leaf area (Law et al. 2001).
Difficulties in accessing forest canopy, however, impose
severe limitations for direct sampling and quantification
of its structure and, therefore, an accurate representation
of its spatial variation is hard to achieve (Parker 1995).
Ground-based light detection and ranging (LiDAR)
systems provide an effective approach to characterize
forest canopies in 3D (Dassot et al. 2011; Hilker et al.
2010; Hopkinson et al. 2004; Moskal and Zheng 2012;
Strahler et al. 2008; Zhao et al. 2012). This is achieved
using a detailed 3D representation of the forest structure
generated through a non-destructive, objective, and
reproducible manner (Cifuentes et al. 2014a; Hosoi and
Omasa 2007; Jupp et al. 2009; Moorthy et al. 2008; Seidel
etal. 2012; Van Leeuwen et al. 2011). Individual trees have
been reconstructed using terrestrial laser scanning (TLS)
data (Coté et al. 2009; Raumonen et al. 2013), or from TLS
data combined with tree modeling software to delineate
individual crowns (Da Silva et al. 2012; Van der Zande
et al. 2011; Van Leeuwen et al. 2013). A limited number
of studies, however, have utilized 3D canopy structural
data to model and study radiation interactions within
clumped broadleaved forest canopies. Bittner et al. (2012)
used a TLS-based voxel representation of an experimental
juvenile beech stand to simulate the light environment.
Similarly, 3D representations of oak stands were gener-
ated and within-canopy light interception was modeled
through time in Van der Zande et al. (2010). Results
of this study highlighted the potential of a voxel-based
representation of forest canopies derived from LiDAR
measurements to study radiation interactions. In order to
build suitable 3D models from TLS-derived data, an opti-
mized processing procedure is introduced aiming at: (i)
address the influence that noise has on the quality of these
data sets (Maas et al. 2008), (i) perform an accurate point
cloud classification (Pfeifer et al. 2004), and (iii) define
an eflicient representation of the tree geometries (Dassot
et al. 2012). First, noise due to range ambiguity, i.e., when
the laser beam is illuminating partially 2 surfaces with dif-
ferent distances from the sensor (Massaro et al. 2014), is
commonly minimized by removing the erroneous points
(also known as ghost points) based on the range differ-
ence with respect to neighboring points (Cifuentes et al.
2014b). Phase-based scanning delivers extra noise origi-
nated at clear beam paths (e.g., open sky or canopy gaps),
where instead of registering a no-hit, random range
measurements are recorded (Newnham et al. 2012).
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Secondly, TLS using monochromatic laser light are lim-
ited in terms of point classification possibly affecting the
quality of the derived canopy 3D models. Point cloud
classification between foliage and woody material is
straightforward when using, for example, TLS with full-
waveform of back scattered energy at 2 wavelengths in the
near (1,063 nm) and middle infrared (1,545 nm) parts
of the electromagnetic spectrum (Danson et al. 2014;
Yang et al. 2013), or at 1,500 nm (Coté et al. 2011). Other
TLS, however, may depend on more complex point cloud
classification methods, such as covariance matrix analysis
(Belton and Lichti 2006), object-based (Zhang and Lin
2012), or dimensionality analysis (Demantké et al. 2009).
Partitioning methods using octree-based algorithms
(Jackins and Tanimoto 1980; Szeliski 1993) have also
been used as a way of segmenting LiDAR point clouds
(Wang and Tseng 2004, 2011) and was implemented on
the processing chain. Finally, to limit data dimensionality
and obtain a proper representation of the tree geometries,
leaves or clump of leaves were represented as planar poly-
gons (e.g., triangles, discs or ellipses; Huang et al. 2013;
Stuckens et al. 2009a).

The main advantage of 3D simulation models is that
the effect of a number of variables can be studied inde-
pendently across a wide range of parameter values and
canopy scenarios (Disney et al. 2010). For instance, feed-
ing canopy models with reliable information about foliage
light interception would allow, for example, simulation
of photosynthetic carbon uptake and net ecosystem gas
exchange (i.e., transpiration and evaporation) in response
to climatic and nutritional conditions (Agren et al. 1991;
Medlyn et al. 2003; Mercado et al. 2007). Similarly, an
accurate characterization of the radiation regime within
the forest canopy can be used as input to energy-balance
models (Hardy et al. 2004).

The reliability of 3D models representing canopy struc-
ture were assessed by comparing observed and simulated
structural variables, such as effective leaf area index (LAI),
clumping index (2), and canopy openness (CO). These
variables can be estimated using hemispherical photog-
raphy and are broadly used to characterize forest canopy
structure and assess understory illumination (Gonsamo
et al. 2010; Jennings et al. 1999; Walter et al. 2003; Weiss
et al. 2004), providing useful information to under-
stand canopy-radiation interactions (Korhonen et al.
2011; Parker 1995). Hemispherical photographs were
taken and used as a validation tool for the LiDAR-based
retrievals after 3D modeling. Consequently, and besides
the traditional use of the coefficient of determination (R?),
hypothesis testing was conducted in the present study to
determine whether there was a significant linear relation-
ship between observed structural variables obtained from
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reference hemispherical photography and simulated
structural variables retrieved from the TLS-based 3D
models. This work aimed to: (i) develop a methodology to
build a set of 3D models that efficiently represented LAI,
Q, and CO of 2 different forest stands, and (ii) select and
use one of the models that were built for each forest stand
to perform canopy-light interaction analysis establish-
ing observed versus simulated transmitted PAR (PARy)
relationships.

Materials and methods

Study site

The field measurements were conducted in the Heverlee
Forest (Heverlee-Meerdaal complex). The complex cov-
ers a total area of approximately 1,890 ha and is the sec-
ond largest forest complex in Flanders, Belgium (50° 51’
N, 4° 40’ E, 60 m above mean sea level). Data were col-
lected on a pure beech (Fagus sylvatica L.) forest stand
and on a mixed forest stand (Figure 1), formed mainly
by a combination of 3 species: beech, oak (Quercus robur
L.), and birch (Betula pendula Roth). Both pure beech and
mixed forests are located in a generally flat terrain where
no understory was present. The average stand variables
represent typical forest conditions in the study areas and
were estimated based on 3 sample plots of 250 m? in the
mixed forest (3.0 ha), and 3 sample plots of 500 m? in
the beech forest (2.5 ha). Different plot sizes were used
given the tree density and diameter at breast height in
each forest stand, while the number of plots was selected
due to their homogeneity, and considering a minimum
sampling intensity of 3%. Respectively, mixed and beech
forests have a density of 675 stems ha™! and 223 stems
ha~!, a basal area of 21.0 m? ha~! and 28.6 m? ha™!, a
quadratic mean diameter of 19.9 cm and 40.4 cm, a mean
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height of 23.1 m and 32.3 m, and a height to crown base
of 7.1 mand 14.3 m.

Digital hemispherical photography

Digital hemispherical photographs (HP) of the canopy
were acquired for each forest with a 6.1 MP Kodak DCS
660 digital camera, with a 180° fisheye lens (8 mm, {/4).
The camera and lens were placed on a tripod 1.3 m above
the ground and leveled using a double axis spirit level. The
camera was oriented towards zenith with the magnetic
north always located at the top of the image (Jonckheere
et al. 2004). HPs were taken within a 30-minute period
in each forest and before sunset (i.e., before 21h00) on a
systematic geometrical pattern as suggested by Cifuentes
et al. (2014a). A total of 9 positions per forest were used
to take HPs on a 10-m grid within a 20 m x 20 m
plot. These data were collected under overcast sky condi-
tions to ensure homogeneous illumination of the canopy
(Easter and Spies 1994; Gendron et al. 2006) on June 2014
(day of year) DOY173.

Below-canopy sampling of global irradiance

A remote cosine-corrected receptor (RCR) foreoptic
attached to a FieldSpec® 3 spectroradiometer was used to
measure instantaneous global irradiance (W m~2) below
forest canopy. The instrument measures the incoming
radiation from 350 nm to 2,500 nm with a spectral res-
olution of 3 nm in the 350 nm-1,050 nm range and
10 nm in the 1,050 nm-2,500 nm range. In the present
study, only solar radiation within the 400 nm-700 nm
range (i.e., PAR;) was used for further analysis. The RCR
foreoptic was placed on a telescopic pole and leveled at
2.1-m height to avoid operator’s partial blocking of the
illumination, including diffuse skylight or light scattered

(c)

Figure 1. Location of study area. (a) Heverlee forest where beech (white square), mixed forests (white circle), and reference measure-
ments of irradiance (white triangle) were located (source orthophoto: Informatie Vlaanderen); (b) leaf-off image of the mixed forest; and

(c) leaf-on image of the beech forest and TLS instrument.



from surrounding objects. The base of the RCR has built-
in bubble levels for its horizontal alignment.

The measurements were taken on every cross point
of a 1-m grid on the 20 m x 20 m plot beneath each
forest. At each measuring position (441 per forest) and for
averaging purposes, 3 measurements were taken within
a 5-second time frame, thus minimizing noise variability
resulting from measuring below forest canopies (Giuliani
and Brown 2008). The total amount of incoming radiation
was measured simultaneously and continuously in the
nearest open area, 1.7 km North-East from the study site
(Figure la), using an HR-1024 spectroradiometer. These
data were used to monitor anomalies in solar radiation
due to clouds or aerosols, and to derive incoming PAR
(PAR;). Data were collected on June 2014, DOY163 and
DOY164, within a 2-hour period around local solar noon,
corresponding to a sun elevation angle range between
60° and 62°. Sky conditions were mostly clear, i.e., not
opaque clouds, but occasional presence of transparent
clouds on both dates. Average wind speed of 0.94 m/s
and 1.1 m/s with predominant wind direction W and S-
SW, on DOY163 and DOY164, respectively. Sunlight was
blocked at the moment irradiance data were recorded
during time periods when sky hemisphere was partly
covered by clouds. For further analysis, a percentage of
these noisy data were removed, retaining 67.4% (n =
297) and 80.1% (n = 353) of the total number of global
irradiance measurements in mixed and beech forest,
respectively.

TLS measurements and processing

TLS measurements were done on a systematic geomet-
rical pattern as suggested by Cifuentes et al. (2014a). A
total of 9 scans, matching the location of HP measure-
ments, were taken per forest on a 10-m grid within a
20 m x 20 m plot. The used TLS, the FARO® LS880, is a
continuous wave laser operating in the near infrared part
of the spectrum (A = 785 nm). It measures the 3D posi-
tion of objects within a range of 76 m. The continuous
output beam emitted from the laser diode passes into the
center of a rotating mirror that deflects it to a fixed angle
of 90° giving a maximum coverage of 320° on the verti-
cal plane, while a rotating motor allows the 360° azimuth
scan. For the present study, the horizontal scanning range
was set to full hemispherical coverage and the vertical
scanning range was set to 240° to avoid recording unnec-
essary data from the forest floor. The laser beam was emit-
ted in fixed steps of 0.036° in both the vertical and the
horizontal plane. The recorded 3D data were then filtered,
registered (i.e., merging of multiple point clouds), classi-
fied in green/non-green vegetation, and voxelized.
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Filtering and registration

A distance-based filter was applied to the scan points of
a single scan re-projected in a 2-dimensional (2D) for-
mat. The distance of each scan point (hereafter called pixel
when re-projected in 2D) to the sensor was compared
to the distance of the pixels located in the adjacent area
(i.e., kernel) to the sensor. A kernel represents the shape
and size of the neighborhood being sampled (i.e., 3 pixels
x 3 pixels square kernel). The pixel being analyzed was
removed if, within the kernel, predefined allocation and
distance criteria were not fulfilled. The distance-based fil-
ter performed an evaluation of each pixel and calculated
the amount of pixels within the kernel that are at approx-
imately the same distance from the sensor (i.e., distance
threshold) as the pixel being evaluated. The pixel was
then classified as valid if a minimum percentage of pix-
els within the kernel (i.e., allocation threshold) fell within
the distance threshold. A detailed description of this filter-
ing procedure for phase-based TLS data can be found in
Cifuentes et al. (2014b). Subsequently, reference spheres
with known dimensions and reflectivity were used to reg-
ister the 9-point clouds into 1 comprehensive point cloud
dataset, partly overcoming the limitation in range (Van
der Zande et al. 2008). A detailed description of the regis-
tration procedure for phase-based TLS data can be found
in Cifuentes et al. (2014a).

Classification

Classification of point clouds into leaves (i.e., leaves and
twigs) and trunks (i.e., trunks and branches) was done in
2 steps. First, subdivision and connection of points from
a point cloud using octrees (Jackins and Tanimoto 1980)
was performed. The octree algorithm describes a set of 3D
data enclosed by a bounding box and outputs sub-clouds
of points through the recursive partition of this cubical
volume. Each sub-cloud or node in the octree represents
the volume formed by a rectangular cuboid, often simpli-
fied to an axis aligned cube (Figure 2). An octree node
has up to 8 children, each corresponding to 1 octant of
the overlying node. Since there is a large degree of coher-
ence between the adjacent cubes in an object, this rep-
resentation enables a fast projection of all of them into
the 3D space (Szeliski 1993). When storing a point cloud,
stopping rules for occupied volumes must be defined,
for example, a maximal depth (i.e., when recursion has
reached a maximum number of sub-division), and a min-
imal number of points in sub-clouds (Elseberg et al. 2013).
The second step was to classify trunks as the sets of
sub-clouds where the dimension of their bounding boxes
fulfilled minimum height, width, and length require-
ments. Finally, the remaining sub-clouds were classified as
leaves.



128 (&) R.CIFUENTESETAL.

(a) (b)

Figure 2. Octree algorithm applied to a sample point cloud (blue dots) visualized in 2D. The point cloud is from a potted orange tree and
a reference sphere situated on top of the pot. The initial point cloud enclosed by a black bounding box in (a) is subdivided into cubes
represented as green squares in (b). Connected cubes from (b) are then grouped into sub-clouds represented with black bounding boxes

in (c), which were later classified into trunks and leaves.

Voxelization

TLS point clouds are characterized by a variable point
density in the 3D space due to the angular measurement
pattern. For further analysis it is necessary to normalize
the point clouds in order to enable comparison of the
3D structure of different parts of the canopy (Van der
Zande et al. 2006). A voxel-based approach was used to
divide the 3D space into a finite number of cubic vox-
els, which were classified depending on point/voxel inter-
action. Voxels with at least 1 return in it were assigned
a value of 1 (filled), and a value 0 (empty) was given to
voxels that did not enclose any return (Hosoi and Omasa
2007). Prior research on voxel-based canopy reconstruc-
tion has concluded that the choice for the optimal voxel
size will depend on forest characteristics, the variables
under study (e.g., gap fraction distribution, canopy open-
ness), and on the TLS system specifications (Béland et al.
2014; Bittner et al. 2012; Seidel et al. 2012). There is a wide
range of voxel sizes recommended in the literature, from
where an optimal decision can be deducted. However, a
thorough analysis for each specific case is highly advis-
able. Hence, the present study used cubic voxels with 4 dif-
ferent side lengths for the estimation of canopy structural
variables: 10 mm, 20 mm, 26 mm, and 30 mm. At the max-
imum range of the scanner (76 m), the distance between 2
neighboring beams is 25.75 mm. Thus, using a voxel with
aside length of 26 mm will minimize the unsampled space
between 2 continuous beams at the maximum range of the
instrument.

Models

In ray-tracing environments, a scene is defined as the 3D
space where the different structures are organized, light

sources are specified, and overall rendering parameters
(e.g., light transport algorithm or image resolution) are
set. An image, on the other hand, is the rendered out-
put using the scene description. In this study, these def-
initions were used for the modeling process, which was
performed in 2 stages. The first stage, or canopy model-
ing, used a voxel-based approach to create 3D representa-
tions of forest canopies using TLS data, and an analysis of
these TLS-derived canopy structures was performed dis-
regarding optical properties of canopy elements. Persis-
tence of Vision Raytracer (POV-Ray; Persistence of Vision
Pty. Ltd. 2004) was used to this aim, assessing the qual-
ity of the TLS data and defining the optimal voxel size
to build the 3D model for the next stage. In the sec-
ond stage, or light modeling, the optical properties of
the different objects were added to the 3D model, for
the assessment of PAR transmitted through the canopy
(PAR¢) using the physically-based ray tracer (PBRT; Pharr
and Humphreys, 2004). Reference leaf reflectance spec-
tra were measured during the field campaign using a
FieldSpec® 3 plant probe and leaf clip with the black
background panel (Stuckens et al. 2009b). Similarly, ref-
erence spectra were measured from trunks and branches
(spectral data not presented).

Canopy modeling

POV-Ray allowed to use the full TLS dataset since param-
eterization is mainly focused on graphical display. Voxels
of 4 different sizes were used to build the forest scenes
in POV-Ray. The voxels were represented as dark-solid
non-reflective cubic objects with white background and
no source of light, as in Cifuentes et al. (2014a). For hemi-
spherical image simulation, a virtual fisheye camera with



adjustable field of view was placed on the 9 positions of
the 10-m grid. Simulated hemispherical images were ren-
dered, analyzed, and compared with reference HP. The
3 variables under study are detailed hereafter. First, the
effective LAIL also referred to as “plant area index” because
it includes branches, is a measure of the 1-sided leaf area
per unit area (Chen and Black 1991). For leaves that are
uniformly distributed with azimuth angle, LAI is defined
as

cost In Py(6)
G(9) ’

where Py(0) is the gap fraction at an angle 6, and G is
the projection of unit area of leaf in the direction 6 on a
plane perpendicular to that direction. Second, the clump-
ing index (£2), which indicates the degree of nonrandom
distribution of foliage in space (Nilson 1971),

In[En(0,6)] 1— Eypn(0,6)
In[Fy(0,60)] 1— E,(0,60)

where F, (0, 6) is the actual gap size cumulative distri-
bution function along a circular transect at zenith angle
0i; E,r (0, 6) is the reduced gap size cumulative distribu-
tion function after the largest gaps were removed. The
largest gaps are removed iteratively from the tabulated gap
dimensions sorted by decreasing values, until differences
between successive distributions of gap fractions become
negligible. Finally, the CO, which is defined as the propor-
tion of sky hemisphere not obscured by vegetation when
viewed from a single point (Jennings et al. 1999),

LAl = (1]

Q@)= (2]

N
CO =) Py (p.0) - [(costy — costy)/n], (3]
1

where Py(¢, 6) is the gap fraction in the direction (¢, 6),
Nis the number of directions given by azimuth and zenith
angles ranges, 6; is the smallest zenith angle, 6, the largest
zenith angle of a portion of the hemisphere, and # the
number of division of azimuth angles.

Reference and simulated images were processed using
CIMES-FISHEYE® (Gonsamo et al. 2011). For LAI and
€2 retrievals, image analysis was restricted to view zenith
angle ranges (ZAR) 20°-60°, 30°-60°, and 40°-60°, as
suggested by various authors and to avoid errors from the
lower and higher viewing angles (Gonsamo et al. 2010;
Leblanc et al. 2005). All these ZAR included the angle
at which the mean projection of leaf area and extinction
coeflicient are nearly independent of leaf angle distribu-
tion (i.e., 57.3°). Additionally, Q retrievals were as well
performed for ZAR 5°-55°, 5°-60°, and 55°-60° as done
by Garcia et al. (2015). For CO analysis using voxel-based
simulated HP, an appropriate ZAR 0°-30° was defined
as a function of the laser scanner maximum range in
Seidel et al. (2012). Similarly, ZAR 0°-25°, 0°-30°, and
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0°-35° were used for CO retrievals in the present study.
After this sensitivity analysis and provided that statisti-
cal analysis was completed, the more suitable voxel sizes
and ZAR were selected and adopted for reconstructing the
3D models for further light simulations, as detailed in the
next section.

Light modeling

The PBRT is a Monte-Carlo rendering system that sup-
ports the implementation of different models for light-
surface interaction, illumination source, and sensor types.
Parameterization in this case is mainly geared towards
physiological functioning, limiting the size of the TLS-
derived 3D model to be used. A forest scene was built with
different components, namely, canopy geometry descrip-
tions, material optical properties, illumination source,
sensor platform, and an integrator, which implements the
light transport algorithm that computes reflected radiance
from surfaces in the scene. Therefore, point assessment of
PAR; was possible once the above mentioned parameters
were defined in PBRT. An approach adapted from Stuck-
ens et al. (2009a) was used in this work as is described
hereafter.

Canopy geometry description. In order to estimate light
transmission using PBRT, the structure of each forest was
reconstructed based on the TLS data. Trunks were built as
triangular meshes by applying the ball pivoting algorithm
described by Bernardini et al. (1999). Similar to the voxel-
based light interception model introduced by Van der
Zandeetal. (2011), leaf voxels were abstracted by triangles
with fixed areas from 100 mm? to 900 mm?, depending
on the selected voxel side length (Figure 3). The azimuth
of the leaves was set randomly and the zenith angle was
fixed to the average zenith angle of the dominant tree
species (i.e., 42.5° for beech). The extension of the sim-
ulated 3D forests were limited to a reference box, which
dimensions were defined in function of the zenith angle
range selected through canopy modeling and the respec-
tive forest mean height, assuring plot-level representative-
ness of the canopy structure. To render a more realistic
forest environment for PAR; retrievals, 24 instances (or
clones) of the reference box were added into the scene
as a buffer zone, creating a homogeneous forested area of
150 m x 150 m.

Material optical properties and scene illumination. For
tree leaves, a bidirectional scattering distribution func-
tion model was used consisting of (i) an implementa-
tion of a microfacets model to simulate the reflectance of
leaves (Bousquet et al. 2005), (if) a Lambertian compo-
nent for the diffuse reflectance, (iii) Lambertian transmit-
tance, and (iv) different optical properties for upper and
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back sides of leaves. For trunks, 1 measured spectrum and
a Lambertian reflectance model was used (Stuckens et al.
2009a).

For PAR; simulation, a directional light source and
a skymap containing the angular distribution of dif-
fuse light were used to simulate the scene illumination
(Figure 4). Direct illumination was calculated as the total
direct downward flux at ground altitude (i.e., at 2.1 m
above ground), while diffuse illumination was calculated
for the entire hemisphere in steps of 2° and 1° in azimuth
and zenith angle, respectively.

Sensor platform. In order to simulate the RCR fore-
optic, a hyperspectral sensor with spectral range from
400 nm to 700 nm and 10 nm spectral resolution was
specified in PBRT. The scenario simulations used a fish-
eye camera with 180° field of view, in which outputs are
expressed as radiance units (W m™2 um™! sr7!). For
comparison purposes, the virtual camera was placed over

(b)
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Figure 3. Reconstruction of beech forest stand. The triangular leaves (individual leaf area = 400 mm?) and the triangular meshes of trunks
(a), only leaves (b), and only trunks (c). Objects are shown starting from 2.1 m in height. Orthographic projections generated in Meshlab
(Visual Computing Lab-ISTI-CNR, Italy).

the scene on every cross point of a 1-m grid, at approxi-
mately the same location as the below canopy sampling of
global irradiance specified earlier.

Simulated PAR, calculation

A total of 441 hemispherical images per forest were ren-
dered in PBRT, and a cosine correction was applied to
each image, enabling measurement of simulated light
from the 180° hemisphere. The simulated PAR, (W m™2)
was then calculated at each image, via integration of the
adjusted radiance values in the 400 nm-700 nm range
using the Trapezoid Rule (Whittaker and Robinson 1924).
This case was given by the formula:

A
(4]

where A is the approximate area under the curve
between 400 nm and 700 nm (i.e., the PAR; value),

(b)

Figure 4. Detailed orthogonal view from top of canopy (a) and perspective view of a trunk section from a leaf-off image (b). Triangular
canopy leaves are shown in green, trunks and soil in brown, and sky map in blue. Images were rendered in PBRT.



Ax is the trapezoid height, #n is the number of trape-
zoids, and y is the measured radiance value (i.e., trape-
zoid width). For a better understanding of the relation-
ship between simulated and observed photosynthetically
active radiation transmitted through the canopy (sPAR;
and oPARy, respectively), both sPAR; and oPAR; values
were scaled to range between 0 and 1 as (sPAR¢)scaled
= [sPAR; — (SPAR)min]/[(SPAR)max — (SPAR{)min)] and
(oPAR;)scaled = [0PAR; — (0PAR)min]/[(0PAR)max —
(0PAR()min)], where subscripts min and max define min-
imal and maximal values of sPAR; and oPAR;.

Statistical analysis

Comparisons between observed and TLS-derived simu-
lated values of a number of variables have been generally
performed using the coefficient of determination (R?), a
statistical measure of how close the data are to the fit-
ted regression line. See, for example, the use of R? for
these comparisons in works by Holopainen et al. (2011),
Moorthy et al. (2008), Seidel et al. (2012), Vaccari et al.
(2013), and Van Leeuwen and Nieuwenhuis (2010). This
coeflicient does provide an estimate of the strength of the
relationship between the model and the response vari-
able; however, it does not provide a formal hypothesis test
for this relationship. In order to assess the relationship
between observed and simulated variables from the 3D
model (i.e., LAL €, CO, and PARy), a linear regression
model was fit and evaluated placing observed values in the
ordinates and simulated values in the abscissas as recom-
mended in Pifeiro et al. (2008). Furthermore, we tested
the hypotheses of 8y =0and ; = 1, and confidence inter-
vals were calculated (o = 0.01) to statistically assess the
significance of regression coefficients for the studied vari-
ables. If the null hypothesis for the slope is rejected, the
conclusion is that simulations have no consistency with
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observed values. If this hypothesis is not rejected but the
hypothesis for the intercept is, then the model is biased.
If both null hypotheses are not rejected, then disagree-
ment between model predictions (i.e., simulated values)
and observed data is due entirely to the unexplained vari-
ance. Besides, the root mean squared deviation (RMSD)
was calculated for each variable being simulated, repre-
senting the mean deviation of simulated values in relation
to the observed ones (Kobayashi and Salam 2000).

Results

Foliage at higher parts of the canopy was only partially
represented due to occlusion issues when collecting the
TLS data (Figure 3). The sparse leaves distributed ran-
domly in the upper parts represent only a proportion of
the real forest canopy or tree crown. Lower vegetation,
however, appears to be well displayed. Similarly, some
trunks and branches were not fully represented, therefore,
only segments of trunks were created using the meshing
algorithm in the voxelized space. This condition occurred
mainly at higher levels in the canopy in both forest stands.
This inherent limitation of TLS systems in representing
the top of the canopy will probably influence further pro-
cessing steps, such as light modeling, and consequently,
impact in the simulation results. Reference HP and simu-
lated HP from POV-Ray are presented in Figure 5. Objects
like trunks, branches, and nearby foliage were clearly
detectable from both images. Canopy gaps near zenith
were also identifiable, but objects and gaps (and their pat-
terns) are less definite at higher zenith angles in the sim-
ulated HP, as the 3D position of elements located further
from 76 m from measuring points are not recorded by the
FARO® L$880.

Regarding the canopy structure analysis, simulated val-
ues of LAT, €2, and CO were compared to observed values

®

Figure 5. Real (a) and simulated (b) B/W hemispherical photographs from the beech forest. Image (b) was rendered in POV-Ray.
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Table 1. Estimated parameters (BO, ,31) for each variable being simulated depending on the selected zenith angle ranges (ZAR) and voxel
sizes in each forest type. Their respective proportion of variation (R?) and root mean squared deviation (RMSD) are presented.

Forest Variable ZAR (°) Voxel Size (mm) 30 31 R? RMSD (%)
Mixed LAI 30-60 10 0.109 1138 0.50 20.0
Q 55-60 10 — 2344 3.327 0.27* 9.8
co 5-35 10 0.017 0.606 0.41 30.0
Beech LAl 20-60 20 0.641 0.738 0.70 83
Q 5-55 20 —0.933 1.795 0.76 26.0
co 5-25 20 —0.002 1.271 0.44 30.0

*Not considered for further analysis.

and the significance of the intercept (Bg) and slope (,31)
were tested. Regressions with an R* lower than 0.4 were
excluded from further analysis.

For LAI in mixed forest, hypothesis testing confirmed
that at ZAR 30°-60°, neither of the null hypotheses (i.e.,
Bo = 0 and B; = 1) can be rejected when using both
10 mm (R? = 0.5 and RMSD = 20%) and 20 mm (R?> = 0.5
and RMSD = 27%) voxel size. The same is true for beech
forest using voxel size 20 mm at ZAR 20°-60°, with R*> =
0.7 and RMSD = 8.3%.

Hypothesis testing for Q2 established that in a mixed
forest neither of the null hypotheses can be rejected at
all ZAR using the whole range of voxel sizes. R?, how-
ever, presented very low values in all regressions with a
maximum R? = 0.27 (RMSD = 9.8%) using voxel size
10 mm at ZAR 55°-60°. For beech forest, in turn, this sce-
nario (i.e., voxel size 10 mm, ZAR 55°-60°) was the only
one where null hypotheses were rejected (R* = 0.22 and
RMSD = 10%). On the contrary, using larger voxel sizes
and greater ZAR delivered the higher R*. At ZAR 5°-55°
and 5°-60° using voxel sizes 20 mm, 26 mm, and 30 mm,
the R? values were all greater than 0.6, with a maximum
R* =0.76 (RMSD = 26%) using voxel size 20 mm at ZAR
5°-55°.

For CO retrievals in the mixed forest neither of the null
hypotheses can be rejected using voxel size 10 mm at all
ZAR (R? > 0.41, RMSD < 30%). For beech forest, the null
hypothesis for the slope is only rejected using voxel size
10 mm in the 0°-35° ZAR, all other scenarios have R? >
0.41 and RMSD < 45%.

The canopy structure analysis confirmed that there is
more than 1 suitable voxel size and zenith angle range for
3D model construction. Using this information, the next
step is the reconstruction of the forest scene in PBRT for
light simulation and PAR; assessment. Table 1 displays a
summary of regression results for each of the structural
variables per forest type.

As described above, the selected voxel sizes were iden-
tical for all 3 variables within forest type. The ZAR in
turn, were slightly different for LAI and CO. Given the
high memory costs in processing ray-tracing algorithms,
the 3D space to be created in PBRT was defined as a

30 x 30 m plot at both mixed and beech forest. Tree tops
located at plot edges (i.e., 15 m from center of plot), inter-
sected with the maximum zenith angle of ZAR for better
CO estimates (i.e., mixed: 35° beech: 25°). The extent of
this 3D space was defined as a compromise between 2 cri-
teria: it should include the lower zenith angles (i.e., where
a high coverage of the 3D space is acquired), being large
enough so most canopy elements and all irradiance mea-
surements are included; but compact enough to efficiently
process ray-tracing algorithms.

The PAR; retrieved below forest canopies was simu-
lated using the attributes selected in the previous section.
For the mixed forest a voxel size 10 mm and ZAR 0°-35°
was used, while voxel size 20 mm and ZAR 0°-25° was
applied for beech forest. Figure 6b shows an image with
the 3D model from the phase-based TLS data added to
the PBRT scene, implementing the cited parameters and
incorporating the illumination source. For comparison,
Figure 6a shows a real beech stand at Heverlee Forest.

The mean difference between scaled oPAR; and sPAR;
and its variability is higher at lower values and tends to
decrease at elevated values of PAR; in mixed forest. Simi-
larly, a higher difference and variability is seen at PAR; <
0.1 in the beech forest. In the latter case, however, mean
differences are lower and more stable at elevated values of
PAR, (Figure 7).

Simple linear regression of PAR; delivered slopes < 1
and intercepts > 0 on both forests (Table 2). The points
of intersection with the 1:1 line are between 0.4-0.45
on mixed forest, and between 0.45-0.5 on beech forest,
meaning that below these points simulated values under-
estimated PAR;, above them, simulated values overesti-
mated PAR;.

Table2. Estimated parameters (BO, 31), proportion of variation (R?),
and root mean squared deviation (RMSD) for simulated transmit-
ted photosynthetically active radiation (PAR,) in mixed and beech
forest stands.

Forest By B, R? RMSD (%)
Mixed 020134 0.58484 01729 35.9
Beech 015991 0.64212 0.4702 3311
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(b)

Figure 6. Real beech forest at the Heverlee Forest (a) and RGB composite image of the modeled beech forest (b). Image (b) was rendered

with orthographic projection in PBRT.

Discussion

POV-Ray simulations of HP provides a first visual assess-
ment of similarities and differences between the real and
simulated forests (Figure 5). Site specific parameters, such
as spectral properties of canopy elements, leaf size, and
branching architecture, govern interactions between laser
pulses and canopy elements impacting the realism of
TLS-derived 3D models. Other issues linked to the TLS
technology, such as laser beam divergence, ghost points,
and scan resolution, can also explicate these differences
(Pueschel et al. 2014). Furthermore, occluded areas con-
tribute to systematic biases in estimates, especially in
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Figure7. Mean difference between scaled observed PAR, vs. scaled
simulated PAR, per class in the mixed (top) and beech (bottom) for-
est. Error bars represent the standard deviation.

dense forests. Registration of multiple point clouds deliv-
ers a comprehensive 3D data set, nevertheless occlusion
effects remain an important factor and can significantly
alter canopy structure estimates using 3D models of dense
canopies (Béland et al. 2014).

TLS-derived 3D models have been used in previ-
ous analyses of vegetation structure, estimating for-
est canopy gap fraction (Ramirez et al. 2013), leaf
area and biomass of individual trees (Holopainen et al.
2011; Huang and Pretzsch 2010), and canopy openness
(Seidel et al. 2012), using point-, intensity-, and voxel-
based approaches. The latter method was found to be suit-
able for simulating HP from phase-based LiDAR data,
and inefficiently create objects for light simulations. How-
ever, voxel size cannot be defined a priori, hence, sensi-
tivity analyses were performed. Results after hypothesis
testing demonstrated that for every canopy structure vari-
able, better simulated values were computed using voxel
size 10 mm in mixed forest and voxel size 20 mm in
beech forest. These findings differ from the findings of
Cifuentes et al. (2014a), where gap fractions at similar for-
est types were better simulated using larger voxel sizes at
ZAR 0°-70°.

Selecting an appropriate voxel size for canopy structure
assessments appears to be conditioned by the objective of
the study. It has been found, for instance, that voxels size
of 10 times the leaf size were appropriate to study single-
tree 3D foliage distribution and to derive spatially explicit
estimates (Béland et al. 2014). In this case, using a voxel
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size larger than the laser pulse cross section, helped in
dealing with occlusion effects. On the other hand, realistic
3D models of forested environments and canopy structure
have been reconstructed using smaller voxel sizes, e.g.,
10 mm, 20 mm, 30 mm, and 100 mm (Bittner et al. 2012;
Cifuentes et al. 2014a; Seidel et al. 2012; Van der Zande
et al. 2008). In conclusion, either when deriving leaf area
within the space of a geometric volume or for emulating
reality for canopy structure assessment and light simula-
tion, the size of the volume needs to be carefully chosen as
it can impact canopy structure estimates. This influence
can be seen for LAI and CO estimates in Figures 5 and
7, respectively. In agreement with the findings of Béland
et al. (2014), increasing voxel sizes delivered decreasing
observed values of LAI (when LAI > 2).

This study performed canopy assessments within
restricted zenith angle ranges (e.g., 20° to 60° for LAI, 5°
to 60° for €2, and 0° to 35° for CO), minimizing the impact
of erroneous estimates of structural variables (Gonsamo
and Pellikka 2009). However, as reported by Leblanc et al.
(2005) and Weiss et al. (2004), the information of canopy
structure retrieved from zenith angles larger than 60° is
relevant for further analysis of, for example, LAI, leaf
area distribution, or foliage profiles. Hence, possible issues
with canopy structure estimates at zenith angles larger
than 60° need to be further studied.

Previous studies have used registered TLS data to
validate incremental segmentation algorithms for point
cloud segmentation using octrees (Wang and Tseng 2011).
Their approach efficiently segmented TLS point clouds of
curved surfaces using adaptive proximity and coherence
criteria to form co-surface points after merging neigh-
boring coplanar points. An octree-based space division
procedure is also used in the CAMPINO (collapsing and
merging procedures in octree-graphs) method designed
for hard targets (i.e., planes and curved surfaces) allow-
ing for geometric tree skeleton reconstructions (Bucksch
and Lindenbergh 2008). Although, it has been demon-
strated that separating leaves and trunks improves the
estimation of relevant canopy structure variables, such as
LAI (Moorthy et al. 2008), the uneven spacing of the TLS
point cloud may lead to segmentation errors and, there-
fore, inadequate classification especially on data collected
under dense forest canopies.

Applying the selected voxel size for efficiently repre-
senting 3D canopies, we were able to simulate light condi-
tions (PAR¢) near the forest floor within the same ranges
as observed values (Figure 7). The differences between
mixed and beech forest (RMSD of 35% and 33%, respec-
tively; Table 2) can be explained by the increased occlu-
sion effect on denser forests. Similar differences have been
reported in Van der Zande et al. (2011) for leaf area den-
sity estimates on virtual forests. After correcting for these

percentage differences and perform hypothesis testing, is
was not possible to reject the null hypothesis for the slope
(B1 = 1), meaning that simulations are consistent with
observed values. Simulations were biased, due to rejection
of null hypothesis for the intercept (8¢ = 0) in both forest
types.

Point to point comparison delivers low correlation
coefficients of 0.17 and 0.47 for mixed and beech for-
est, respectively. High variability in both in situ measure-
ments and simulations, can be associated to the hetero-
geneous arrangement of canopy elements in irregular or
mixed forest stands (Courbaud et al. 2003; Giuliani and
Brown 2008). Further reasons to explain this behavior
can be related to, first, atmospheric conditions (e.g., dif-
ferences between reference and below canopy radiation
records), given that direct validation did not yield good
results given the extent of separation between the instru-
ments (1.7 km). Second, 3D model construction, since
TLS limitations to scan the top of canopy (Figure 6) and
the mentioned occlusion effect can influence 3D mod-
els and light simulation. Adding simulated biomass in the
upper layers based on the structure measured in lower lay-
ers can be an option to minimize this constraint. Another
option is to incorporate 3D data from airborne LiDAR
or taking advantage of the rapidly increasing technol-
ogy of unmanned aerial vehicles (UAV). The latter can
be used to collect data at different heights, providing a
solution and valuable 3D data on the location of foliage
elements that are embedded in the canopy (Chisholm
et al. 2013). Finally, parameterization of PBRT, given that
a grid of 1 m x 1 m (or any other dimension) was per-
fectly outlined within the ray-tracing environment. Real
measurements, however, were conditioned by topogra-
phy and location of trees, where mismatch between the
positions of the simulated sensor versus the real locations
were noted. As confirmed by Bittner et al. (2012) on their
study about PAR measured under an experimental beech
stand and controlled conditions, small variations of the
sensor position (e.g., close to trunks, branches, or leaves),
may lead to significant variations of the recorded values.
A spatial point to point comparison approach generally
shows reduced agreement caused by small errors in crown
location (Mariscal et al. 2004). Assumptions in 3D forest
canopy reconstruction for light modeling could have also
contributed to the low correlation between observed and
simulated values of PAR,. For example, although includ-
ing several instances of the central block allowed to count
for lateral radiation fluxes, it may have also influenced the
results in PAR, simulation by “closing” gaps that existed in
the real forest stands (i.e., outside the 30 m x 30 m central
block).

With regard to the PBRT scene description, parame-
ters and their values used to represent the objects, other



techniques may be explored in order to make the render-
ing process more efficient. For example, the duplication of
the central instance to avoid the problem of low elevation
angles can be replaced for an alternative, as shown in Da
Silva et al. (2012), with the addition of a wall with cali-
brated opacity representing the radiative properties of the
environment and saving computing time. Using this wall,
however, will render unrealistic forest scenes, adding lim-
itations for reliably computing incoming irradiance along
a vertical or horizontal gradient.

We firmly believe that if proper actions are taken in
order to minimize these errors and improve performance,
it will be possible to better simulate canopy-light interac-
tions at different height levels within the forest canopy.

Unlike 3D models derived from airborne laser scan-
ning data, which will deliver more accurate representation
of tree tops (Chasmer et al. 2006; Falkowski et al. 2008),
the presented approach seems to be appropriate to char-
acterize understory and forest structure at lower height
classes. According to Disney et al. (2006), the understory
is likely to influence the top-of-canopy signal at young
ages and/or stands of low density, reducing sensitivity
of the measured signal. Thus, the use of more realistic
description of the understory, such as the presented 3D
models from TLS data, may improve the sensitivity of the
modeled signal from the top of canopy. This was not the
aim of the present study, thus the analysis of, for example,
influence of canopy structure on top-of-canopy signal is a
matter of future investigation.

Conclusions

Phase-based TLS data allowed to build proper 3D canopy
models for structural characterization of 2 types of forests,
providing important inputs for canopy-light interaction
analysis in a ray-tracing environment. The hypotheses
testing based on an observed-predicted regression model
is shown to be suitable for modeling canopy structure,
allowing to test several variables in different settings,
and providing a statistical framework for assessing the
uncertainty of relationships between observed and sim-
ulated variables. Although limitation in range is reduced
by registering point clouds, it is still a major issue for
some TLS systems. Registration also minimizes occlusion
effects, but this issue will also depend on vegetation, for-
est stand, and understory characteristics. Nevertheless, it
was demonstrated that assessments of canopy structural
variables using voxel-based 3D models from real forests
were comparable to observed ones, at specific zenith angle
ranges. Classification using octrees was a key step for ade-
quate simulation of canopy-light interactions, helping to
overcome the limitation of the monochromatic TLS in
clustering points together as leaves or trunks. Although
the 3D models accounted for tree clump and large gaps,
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as well as for small gaps within the tree crowns, low cor-
relations were observed in point to point examinations of
PAR;. The mean differences between observed and simu-
lated PAR; values in the mixed forest are larger than in the
beech forest. These differences can be associated with sev-
eral factors including the mentioned elevated occlusion
in dense heterogeneous forests, atmospheric conditions,
3D model construction, and parameterization for ray
tracing.

The results of this study demonstrated the potential
of TLS data to create forest canopy models that can be
used for light modeling, as well as currently unresolved
issues. To improve 3D space sampling procedures, it is
recommended to explore the use of UAVs for scanning
forest canopies at different height levels. Moreover, sen-
sitivity analyses can be performed in order to identify
the optimal features for canopy reconstruction, e.g., the
impact of leaf angle, shape, and size in light distribu-
tion simulations. This information complemented with
within-canopy radiation data, can be useful to fully char-
acterize the canopy structure, estimate canopy growth,
and to predict natural or managed forest renovation and
model forest succession. 3D models and light simula-
tions can then be adjusted, tested, and extended to handle
the full electromagnetic spectrum of incoming radiation.
Thus, improved functional-structural models of forests
can be used to the estimation of, for example, energy
fluxes inside the canopy and between canopy elements
and forest floor. A combined structural and radiometric
modeling approach is recommended in order to explore
the impact of canopy structure on the resulting remotely
sensed signal. Future work could also incorporate air-
borne LiDAR and hyperspectral data in order to quantify
this impact at both local and landscape scale.
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